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Abstract. As a continuation of our previous paper [Eur. Phys. J. C 23, 633 (2002)] we further develop
our new method for calculating helicity amplitudes of jet-like QED processes described by tree diagrams,
applying it to lepton pair production. This method consists in replacing spinor structures for real and
weakly virtual intermediate leptons by simple transition vertices. New vertices are introduced for the pair
production case, and previous bremsstrahlung vertices are generalized to include virtual photons inside
the considered jet. We present a diagrammatic approach that allows us to write down in an efficient way
the leading helicity amplitudes, at tree level. The obtained compact amplitudes are particularly suitable
for numerical calculations in jet-like kinematics. Several examples with up to four particles in a jet are
discussed in detail.

1 Introduction

In [1] we have studied quantum electrodynamics (QED)
bremsstrahlung processes1

e(p1)+e±(p2) → e(p3)+γ(k1)+ . . .+γ(kn)+e±(p4) (1)

in the jet-like kinematics: Ei � m and m <∼ |pi⊥| � Ei

including the helicities of all particles. In particular, we
have considered in detail the emission of one, two and
three photons along the direction of the first initial lepton
described by the block diagrams of Figs. 1.2, 1.9 and 1.11,
respectively. The corresponding amplitudes have the form

Mfi =
s

q2 J1J2 , (2)

where the impact factors J1 for the different bremsstrah-
lung processes in the first jet have been found in Sects. 4,
5 and 6 of that paper, while the second (trivial) impact
factor for reaction (1) is

J2 = ∓
√

8πα δλ2λ4 ei(λ2ϕ2−λ4ϕ4) . (3)
a e-mail: carimalo@in2p3.fr
b e-mail: Arwed.Schiller@itp.uni-leipzig.de
c e-mail: serbo@math.nsc.ru
1 Below we shall quote formulae and figures from this paper

by a double numbering, for example, (1.21) and Fig. 1.3 means
(21) and Fig. 3 from [1]. For a more complete list of references
consult our previous work

The main idea of our approximation consists in replacing
the numerators of the lepton propagators of small virtual-
ity by vertices which are matrices with respect to lepton
helicities. These vertices V (p, k), Ṽ (p, k) and V (p) are sim-
ple analytical expressions given in Sect. 3.1 of [1] and they
represent the building blocks for the whole amplitude of
the bremsstrahlung processes.

In the present paper we consider processes with lep-
ton pair production. All non-trivial points can be demon-
strated considering the pair production processes of order
e3 and e4.

To order e3 there is one process for the photo-produc-
tion of a single lepton pair (Fig. 1.3). The corresponding
impact factor can be easily obtained from the impact fac-
tor for the single bremsstrahlung of Fig. 1.2 by a transition
to the cross-channel. Performing that transformation for
the impact factor J1, all amplitudes for the processes of
Figs. 1.4–1.6 are given as simple combinations of the ob-
tained impact factors.

Among the other processes of order e4 mentioned in
paper [1], only the bremsstrahlung pair production
(Fig. 1.8) can be considered as a new process, since di-
agrams of Figs. 1.7 and 1.10 represent amplitudes which
are the cross-channel amplitudes for the direct processes
of Figs. 1.8 and 1.9, respectively.

Therefore, we have to calculate the impact factor for
the bremsstrahlung pair production of Fig. 1.8 and to find
out the substitution rules for energy fractions, transverse
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Fig. 1. The block diagram for the process ee → eeµ+µ−γ

momenta and polarizations of the particles under cross-
ing. In the calculation additional vertices will be intro-
duced and the bremsstrahlung vertices of our previous pa-
per have to be generalized including virtual photons with
helicity zero.

Those vertices as well as the rules for crossing are pre-
sented in Sect. 2. In Sect. 3 we derive the impact factor
of Fig. 1.3 using the crossing relations which is the ba-
sis for pair production in γe and γγ collisions. In the
next section we consider the bremsstrahlung pair produc-
tion of Fig. 1.8. Here for the first time intermediate vir-
tual photons have to be taken into account in the consid-
ered jet. This represents the starting point for considering
more complicated processes in the jet-like kinematics. As
an example illustrating the efficiency of the new method
we consider in Sect. 5 its application to the more compli-
cated process of Fig. 1 – the collision of an electron and a
positron with production of a µ+µ− pair together with a
photon inside the first jet. Our results are summarized in
the final section.

2 Method for calculation of amplitudes
with pair production

In addition to formulae presented in Sect. 2 of [1], we de-
rive in this section some additional rules and formulae
useful for processes with lepton pair production.

2.1 Vertices related to pair production

In this subsection we consider the new vertices appear-
ing in the processes described by Figs. 1.3, 1.5–1.8, 1.10
and Fig. 1. For jet-like processes with lepton pair produc-
tion we can repeat the main points from [1]. In particular,
we present the amplitude Mfi in the factorized form (2).
Then, we express the numerators of all spinor propaga-
tors p̂±m with E > 0 for virtual e∓ via bispinors for real
electrons and positrons with 3-momentum p or (−p):

p̂ + m = u(λ)
p ū(λ)

p +
p2 − m2

4E2 v
(λ)
−pv̄

(λ)
−p , (4)

p̂ − m = v(λ)
p v̄(λ)

p +
p2 − m2

4E2 u
(λ)
−pū

(λ)
−p .

This allows us to replace p̂ ± m by transition currents
or generalized vertices with real electrons and positrons.
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Fig. 2. Feynman diagrams for the impact factor related to
bremsstrahlung µ+µ− pair production

In addition to the vertices V (p, k), Ṽ (p, k) and V (p) for
bremsstrahlung given in (1.37)–(1.43), we have to con-
sider now new vertices for the bremsstrahlung of a vir-
tual photon as well as vertices for the transition γ(k) →
e+(p+) + e−(p−) where γ(k) is a real or virtual photon
with 4-momentum k.

To illustrate this point, let us consider, for example,
the bremsstrahlung µ−µ+ production of Fig. 1.8,

e− + e+ → e−µ−µ+ + e+ .

We present the impact factor of this process, described
by the Feynman diagrams of Fig. 2, in the form

J1(e−
λ1

+ γ∗ → e−
λ3

+ µ+
λ+

+ µ−
λ−) =

√
4πα

k2 AµIµ , (5)

where Iµ is the current for the virtual transition γ(k) →
µ+(p+) + µ−(p−),

Iµ = ū(λ−)
p− γµ v(λ+)

p+
, (6)

and Aµ is the amplitude of the virtual Compton scatter-
ing,

Aµ = 4πα

(
Nµ

1

2p1k − k2 − Nµ
3

2p3k + k2

)
, (7)

Nµ
1 = ū3 êq (p̂1 − k̂ + m)γµu1 ,

Nµ
3 = ū3γ

µ(p̂3 + k̂ + m) êq u1 .

The 4-vector

eq ≡
√

2P2

s
(8)

can be considered as an “effective polarization vector” for
the t-channel virtual photon with momentum q.

Both 4-vectors Aµ and Iµ are orthogonal to the mo-
mentum of the virtual photon k due to gauge invariance:

Ak = Ik = 0 .
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Therefore, Aµ and Iµ have only three independent
components which can be chosen along the three polar-
ization 4-vectors e(Λ)(k) for the virtual photon with 4-
momentum k and helicity Λ = 0, ±1:

e(±)(k) = e
(±)
⊥ − ke

(±)
⊥

kP2
P2 , (9)

e
(±)
⊥ = ∓ 1√

2
(0, 1, ±i, 0) ,

e(0)(k) =

√
k2

kP2

(
P2 − kP2

k2 k

)
. (10)

These vectors obey the conditions

k e(Λ) = 0 , e(Λ)∗e(Λ′) = −δΛΛ′ ,∑
Λ=0, ±1

e(Λ)∗
µ e(Λ)

ν = −gµν +
kµkν

k2 . (11)

Due to gauge invariance, we can use e(0) in the simpler
form

e(0)(k) =

√
k2

kP2
P2 . (12)

Note that this vector is quite similar to the vector eq =√
2P2/s. The last equation in (11) allows us to replace the

scalar product AI by the sum over helicity states of the
virtual photon

AI = −
∑

Λ=0, ±1

A(Λ)I(Λ) , (13)

A(Λ) = A e(Λ)∗ , I(Λ) = I e(Λ) .

This relation is very convenient to analyze the structure
of the discussed impact factor.

The quantity A(Λ) has the same structure as the im-
pact factor for the single bremsstrahlung (1.61) and con-
tains similar vertices, but for photon helicities Λ = 0, ±1
and photon virtuality k2 �= 0. To obtain these vertices,
we return to (4). The numerator of the spinor propagator
p̂ ± m in (4) consists in two terms. The first term corre-
sponds to the simple replacements

p̂ + m → u(λ)
p ū(λ)

p , p̂ − m → v(λ)
p v̄(λ)

p , (14)

and leads to the vertex (1.43)

V (p) ≡ Vλλ′(p) = ū
(λ′)
p′ êq u(λ)

p = v̄(λ)
p êq v

(λ′)
p′

=
√

2
E′

E1
δλλ′ Φ (15)

(with E′ = E) and to the vertex

V (p, k) ≡ V Λ
λλ′(p, k)

= ū
(λ′)
p′ ê(Λ) ∗(k) u(λ)

p = v̄(λ)
p ê(Λ) ∗(k) v

(λ′)
p′

=
{[

δλλ′ 2
(
e(Λ) ∗p

)
(1 − x δΛ,−2λ)

+ δλ,−λ′ δΛ,2λ

√
2 mx

]
(1 − δΛ,0)

+ 2
√

k2 1 − x

x
δλλ′ δΛ,0

}
Φ . (16)
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Fig. 3. Vertex V (p) for initial electron (positron) with momen-
tum p and helicity λ, final electron (positron) with p′ and λ′

and t-channel virtual photon with momentum q and “effective
polarization vector” eq =

√
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Fig. 4. Vertex V (p, k) for initial electron (positron) with p
and λ, final electron (positron) with p′ and λ′ and final photon
with k and Λ = 0, ±1

Here x = ω/E and the function Φ is the same as in (1.41):

Φ =

√
E

E′ e
i(λ′ϕ′−λϕ) . (17)

For helicity states Λ = ±1 the vertex (16) coincides with
that given in (1.39)2. It is convenient to present the ver-
tices (15)–(16) by diagrams of Figs. 3 and 4, respectively.

The second term in p̂ ± m of (4) corresponds to the
more complicated replacements [cf. (1.32)]

p̂ + m → p2 − m2

4E2 v
(λ)
−pv̄

(λ)
−p ≈ p2 − m2

4EE2
P̂2 ,

p̂ − m → p2 − m2

4E2 u
(λ)
−pū

(λ)
−p ≈ p2 − m2

4EE2
P̂2 . (18)

Since these expressions contain a factor proportional to
the denominator of the spinor propagator, that denom-
inator is cancelled and a new vertex with four external
lines can be introduced (similar to a vertex with four ex-
ternal particles in scalar QED). Graphically we denote
this vertex by the diagrams of Fig. 5 in which the crossed
lepton line represents the contracted line corresponding to
replacement (18). Using this newly defined vertex, we can
avoid from now on vertices Ṽ used in [1].

The vertex of Fig. 5 is given by

2 In the corresponding formulae of [1] there are misprints: in
(1.38) and in the equation after (1.36) an additional “minus”
sign has to be inserted before the last equality; in (1.40) the
factor −Λ has to be eliminated; both signs “minus” have to
be removed in (1.54); in (1.85), (1.87), (1.104), (1.105) each
product of two vertices Ṽ (p, k) should be taken with opposite
sign
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Fig. 5. Vertex V (p, k1, k2) for initial and final electrons (posi-
trons) with p, λ and p′, λ′ and emission of two photons with
k1, Λ1 and k2, Λ2 connected by a crossed intermediate lepton
line

V (p, k1, k2) ≡ V Λ1Λ2
λ λ′ (p, k1, k2)

=
1

4(E − ω1)E2
ū

(λ′)
p′ ê(Λ2)∗(k2) P̂2 ê(Λ1)∗(k1) u(λ)

p

=
1

4(E − ω1)E2
v̄(λ)
p ê(Λ1)∗(k1) P̂2 ê(Λ2)∗(k2) v

(λ′)
p′

= −2
E′

E − ω1
δλλ′δΛ1,2λ δΛ1,−Λ2Φ. (19)

This equation can easily be proved if we notice that for
the used polarization vectors (9) and (12) we have

ê(Λ2)∗(k2)P̂2ê
(Λ1)∗(k1)

= ê
(Λ2)∗
⊥ P̂2 ê

(Λ1)∗
⊥ (1 − δΛ1,0) δΛ1,−Λ2

= −P̂2 (1 + Λ1 Σz) δΛ1,±1 δΛ2,∓1 , (20)

where the matrix Σz is diagonal in the standard as well
as in the spinor representation:

Σz =

(
σz 0
0 σz

)
;

σz is the Pauli matrix.
In the spirit of [1], we can introduce the following ad-

ditional diagrammatic rules.
(1) A crossed lepton line cannot start or end at a ver-
tex with the t-channel virtual photon of momentum q or
a virtual photon in the considered jet with helicity state
Λ = 0 (other helicity states for virtual photons of the jet
are allowed).
(2) Two crossed lines should be separated at least by one
uncrossed line. In other words, vertices with more than
four external lines are forbidden.

Those rules are due to the fact that a crossed line cor-
responds to the replacements (18). Therefore, rule (1) is
due to the equations êq P̂2 = P̂2 êq = 0 with eq =

√
2P2/s

and ê(0) P̂2 = P̂2 ê(0) = 0. Rule (2) is a consequence of the
equation P̂2 ê(Λ)(k) P̂2 = 0.
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Fig. 6. Vertex V (k, p+) for initial photon (k, Λ) and final
lepton (p−, λ−) and antilepton (p+, λ+)

Now we consider the current I(Λ) (6) which is a new
vertex corresponding to the transitions γ(k) → µ+(p+) +
µ−(p−) or γ(k) → e+(p+) + e−(p−) with k = p+ + p−
(Fig. 6):

V (k, p+) ≡ I(Λ) = V
Λ

λ+λ−(k, p+)

= ū(λ−)
p− ê(Λ)(k) v(λ+)

p+
. (21)

Let us compare this vertex with V (p, k) from (16).
Taking into account that

e
(Λ)
⊥ = −e

(−Λ) ∗
⊥ , e(0)(k) = −e(0)(−k) ,

we find
e(Λ)(k) = −e(−Λ) ∗(−k) . (22)

In addition, it is known (see the appendix in [1]) that the
bispinor v

(λ+)
p+ can be obtained from the bispinor u

(λ)
p :

v(λ+)
p+

= (23)

u(λ)
p (E → −E+, λ → −λ+, θ → θ+, ϕ → ϕ+) ,

with the convention
√−E+ = +i

√
E+. Due to these con-

nections between spinors and polarization vectors, we find
the useful relation

V
Λ

λ+λ−(k, p+) = −V −Λ
−λ+λ−(−p+, −k) , (24)

from which it immediately follows that

V
Λ

λ+λ−(k, p+)

= i
{

1
x+

[
δλ+,−λ− 2

(
e(Λ)p+

) (
δΛ,−2λ+ − x+

)
−δλ+λ− δΛ,2λ+

√
2 m
]

(1 − δΛ,0) (25)

+2
√

k2 x− δλ+,−λ− δΛ,0

}
Φ ,

where

x± =
E±
ω

, Φ =

√
E+

E−
ei(λ+ϕ++λ−ϕ−) . (26)

It is useful to recall that for the polarization vectors
we have

e(±)p+ = e
(±)
⊥ (p+⊥ − x+k⊥)

= −e(±)p− = −e
(±)
⊥ (p−⊥ − x−k⊥) . (27)
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Using (27) and the equalities x+ + x− = 1, k⊥ = p+⊥ +
p−⊥, we can rewrite (25) in the form

V
Λ

λ+λ−(k, p+) = i
√

E+E−

×
{[

2δλ+,−λ−e
(Λ)
⊥

(
p+⊥
E+

δΛ,−2λ+ +
p−⊥
E−

δΛ,−2λ− − k⊥
ω

)
−δλ+λ− δΛ,2λ+

√
2

mω

E+E−

]
(1 − δΛ,0)

+2

√
k2

ω
δλ+,−λ− δΛ,0

}
ei(λ+ϕ++λ−ϕ−), (28)

which clearly exhibits the symmetry under lepton ex-
change e+ ↔ e−:

V
Λ

λ+ λ−(k, p+) = V
Λ

λ− λ+
(k, p−) . (29)

Analogously to (19), it is convenient to introduce ver-
tices with four external lines obtained from diagrams of
Fig. 5 by interchanging one of the outgoing photons with
the initial lepton or antilepton. For example, performing
the replacements k1 → −k1, Λ1 → −Λ1, p → −p, λ → −λ,
we get

V (k1, p, k2) ≡ V
Λ1Λ2

λ λ′(k1, p, k2)

=
1

4(ω1 − E)E2
ū

(λ′)
p′ ê(Λ2)∗(k2) P̂2 ê(Λ1)(k1) v(λ)

p

=
1

4(ω1 − E)E2
ū(λ)
p ê(Λ1)(k1) P̂2 ê(Λ2)∗(k2) v

(λ′)
p′

= 2i
E′

ω1 − E
δλ,−λ′ δΛ1,2λ δΛ1,Λ2

√
E

E′ ei(λϕ+λ′ϕ′) . (30)

The last identity in this equation can easily be obtained
using a relation analogous to (24):

V
Λ1Λ2

λ λ′(k1, p, k2) = −V −Λ1Λ2
−λ λ′ (−p, −k1, k2) . (31)

Furthermore, we can specify (30) for the two diagrams of
Fig. 7 which represent the two possible crossings of the
diagrams of Fig. 5: either

V
ΛΛ′

λ+λ−(k, p+, k′) (32)

= 2i

√
E+E−

ω − E+
δλ+,−λ− δΛ,2λ+ δΛΛ′ ei(λ+ϕ++λ−ϕ−)

or

V
ΛΛ′

λ−λ+
(k, p−, k′) (33)

= 2i

√
E+E−

ω − E−
δλ+,−λ− δΛ,2λ− δΛΛ′ ei(λ+ϕ++λ−ϕ−) .

The further calculation of the discussed impact factor (5)
will be performed in Sect. 4.

V
Λ Λ′

λ+λ−(k, p+, k′)
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p−, λ− k′, Λ′

Fig. 7. Vertices V (k, p+, k′) and V (k, p−, k′) for the transition
of initial photon (k, Λ) to final electron (or positron) with emis-
sion of positron (or electron) and photon (k′, Λ′) connected by
a crossed intermediate lepton line

2.2 Some properties of the vertex V (k, p+)

For reference reasons it is useful to present formulae (25)
for some particular cases, omitting the factors Φ. In the
case of the helicity conserved transitions, λ+ = −λ−, these
vertices are of the form

V (k, p+) = −2i ep+ for Λ = 2λ+ = −2λ− ,

V (k, p+) =
2i
x+

(1 − x+) ep+ for Λ = −2λ+ = 2λ− ,

V (k, p+) = 2i
√

k2 x− for Λ = 0 . (34)

In the case of the helicity non-conserved transitions, λ+ =
λ−, we have

V
+
++(k, p+) = V

−
−−(k, p+) = −

√
2 i

x+
m ,

V
−
++(k, p+) = V

+
−−(k, p+) (35)

= V
0
++(k, p+) = V

0
−−(k, p+) = 0 .

The properties of the new vertices are quite similar to
those for the previous bremsstrahlung vertices. In partic-
ular, vertices with the maximal change of helicity,

max |∆λ| = max |Λ − λ+ − λ−| = 2 , (36)

are absent. If the final e± becomes very hard (x± → 1,
x∓ → 0) the initial photon “transmits” its helicity to this
hard lepton, i.e. the vertex V (k, p+) with Λ = 2λ± domi-
nates at x± → 1. For helicity non-conserved vertices there
is a strong correlation between the helicity of the photon
and the positron:

Λ = 2λ+ if λ+ = λ− . (37)
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Fig. 9. Generic block diagram of the cross-process c̄(p̄1) +
b(p2) → ā(k̄) + ... + jet2

2.3 Substitution rules for the cross-channel

Let us consider the direct process of Fig. 8:

a(p1) + b(p2) → c(k) + . . . (38)

and the so-called conjugated or cross-process of Fig. 9:

c̄(p̄1) + b(p2) → ā(k̄) + . . . , (39)

where ā and c̄ denote the corresponding antiparticles. It is
well known that the amplitude Mfi of the cross-channel
can be obtained from the amplitude Mfi of the direct
process by replacing

p1 → −k̄, k → −p̄1 , λa → −λā , λc → −λc̄ (40)

(and, maybe, by an additional change of sign, cf. (22) and
footnote 1.4). In this section the λa,c generically denote
the helicities of both leptons and photons.

If, for example, the considered initial particle is an elec-
tron, a = e−(p1), and the final particle to be crossed a
photon, c = γ(k), then ā = e+(k̄) and c̄ = γ(p̄1). The
initial electron with 4-momentum p1 and helicity λ1 is
described by the bispinor u

(λ1)
p1 in the amplitude of the

direct process. In the conjugated process the particle ā is
the final positron with 4-momentum k̄ ≡ p+ and helicity
λ+ described by the bispinor v

(λ+)
p+ . These bispinors are

connected by relation (23). Analogously, the final photon
with 4-momentum k and helicity Λ is described by the po-
larization vector e(Λ)∗(k) in Mfi. For the conjugated pro-
cess in Mfi the initial photon with 4-momentum p̄1 = −k

and helicity Λ is described by e(Λ)(−k). These polarization
vectors are connected by relation (22).

Between the Sudakov variables for the direct and con-
jugated processes certain relations exist which were ob-
tained in [2]. In the direct process we introduce the Su-
dakov variables for the initial particle a with 4-momentum
p1, the particle c in the first jet with 4-momentum k and
for some other particle in the first jet with pi, using the
definition3:

k = xP1 + yP2 + k⊥ , pi = xiP1 + yiP2 + pi⊥ , (41)

P1,2 = p1,2 − p2
1,2

s
p2,1 , P 2

1,2 = 0 , k⊥p1,2 = pi⊥p1,2 = 0 .

For the conjugated process we have

k̄ = x̄P̄1 + ȳP̄2 + k̄⊥ , pi = x̄iP̄1 + ȳiP̄2 + p̄i⊥ , (42)

P̄1,2 = p̄1,2 − p̄2
1,2

s̄
p̄2,1 , P̄ 2

1,2 = 0 , k̄⊥p̄1,2 = p̄i⊥p̄1,2 = 0 .

In the jet-like kinematics all particles in the first jet
have large components along P1 in the direct process (or
along P̄1 in the conjugated process) and small components
along P2 (or P̄2), therefore, x, xi, x̄, x̄i ∼ 1, while y ∼
(k2 + k2

⊥)/s, yi ∼ (m2
i + p2

i⊥)/s and ȳ ∼ (k̄2 + k̄2
⊥)/s̄,

ȳi ∼ (m̄2
i + p̄2

i⊥)/s̄. Comparing

x =
2kP2

s
=

kp2

p1p2
, xi =

pip2

p1p2

with

x̄ =
2k̄P̄2

s̄
=

p1p2

kp2
, x̄i = −pip2

kp2
,

we immediately obtain the relations

x =
1
x̄

, xi = − x̄i

x̄
, s = −s̄x̄ . (43)

Presenting the equation −p1 = k̄ = x̄P̄1 + ȳP̄2 + k̄⊥ in
the form

−p1 = −x̄k + b̄p2 + k̄⊥ , b̄ = ȳ − x̄k2

s̄
,

the 4-vector k from the right-hand-side can be expressed
as follows:

k =
1
x̄

(p1 + b̄p2 + k̄⊥) .

Comparing this equation with

k = xP1 + yP2 + k⊥ = xp1 + bp2 + k⊥ , b = y − xp2
1

s
,

and taking into account (43) and the conditions k⊥p2 =
k̄⊥p2 = 0, we obtain

k⊥ =
k̄⊥
x̄

. (44)

3 Formulae given below are valid up to terms of the relative
order of (m2

i +p2
i⊥)/s or (m̄2

i + p̄2
i⊥)/s̄ which we systematically

omit (here s = 2p1p2 , s̄ = 2p̄1p̄2 , p̄2 = p2)
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Performing a similar comparison for the 4-momenta of
the other particles in the first jet between

pi = x̄iP̄1 + ȳiP̄2 + p̄i⊥ = −x̄ixp1 + b̄ip2 − x̄ik⊥ + p̄i⊥

and

pi = xiP1 + yiP2 + pi⊥ = xip1 + bip2 + pi⊥ ,

we find another useful relation

pi⊥ = p̄i⊥ − x̄i

x̄
k̄⊥ . (45)

As expected, the transformations (43) respect the con-
servation of energy fraction and (44) and (45) the trans-
verse momentum conservation of the direct and conju-
gated process within the first jet:

1 = x +
∑

i

xi = x̄ +
∑

i

x̄i ,

q⊥ = k⊥ +
∑

i

ki⊥ = k̄⊥ +
∑

i

k̄i⊥ .

Since the impact factor J1 of that jet depends only on
energy fractions, transverse momenta and helicities of all
final particles in the jet and of the incoming particle (en-
ergy fraction equal to one, no transverse momentum),
the transformations (43)–(45) together with the helicity
changes (40) for the particles to be crossed completely de-
scribe the transformation from an impact factor in the di-
rect process to that of the cross-process. Finally, a possible
sign change in the impact factor as a result of transforma-
tion of the form (22) has to be taken into account.

3 Pair production in γe and γγ collisions

The impact factor for the single lepton pair production of
Fig. 1.3 can be obtained from (1.61) by the replacements

p1 → −p+ , p3 → p− , k → −k ,

e(Λ)∗(k) → e(Λ)(k) , u1 → v+ , u3 → u− (46)

and is of the form

J1(γΛ+γ∗ → e+
λ+

+e−
λ−) = 4πα

(
N+

2kp+
+

N−
2kp−

)
, (47)

N+ = ū− êq (−p̂+ + k̂ + m) ê v+ ,

N− = ū− ê (p̂− − k̂ + m) êq v+ ;

e ≡ e(Λ)(k) is the polarization 4-vector of the initial pho-
ton and eq =

√
2P2/s. Following along the lepton line and

using the rules from Sect. 2.1, the impact factor can be
written in the form

J1 = 4πα

V
Λ

λ+ λ(k, p+)Vλ λ−(k − p+)
2kp+

−V
Λ

λ− λ(k, p−)Vλ λ+(k − p−)
2kp−

 , (48)

where the vertices V (p) and V (k, p±) are given by (15)
and (25), (29), respectively.

In the following we could repeat here all steps of the
calculation as described in Sect. 4 of [1]. However, instead
of performing the calculations, the final expression can be
directly obtained from (1.75) and (1.76) using the substi-
tution rules:

J1(eγ∗ → eγ) → −J1(γγ∗ → e+e−)
x+

,

x → 1
x+

,
k⊥
x

→ p+⊥ , q⊥ − k⊥
x

→ p−⊥ , (49)

λ1 → −λ+ , λ3 → λ−, Λ → −Λ ,

ϕ1 → ϕ+ , ϕ3 → ϕ− ,

where x± = E±/ω. This gives

J1(γΛ + γ∗ → e+
λ+

+ e−
λ−)

= 8πα i
√

x+x− ei(λ+ϕ++λ−ϕ−) (50)

×
[(

x+ − δΛ,−2λ+

)√
2Te(Λ)

⊥ δλ+,−λ− − mSδλ+λ−δΛ,2λ+

]
.

The transverse 4-vector T (in the used reference frame
T = (0,T, 0), T 2 = −T2) and the scalar S are defined as

T =
p+⊥
a

+
p−⊥

b
, S =

1
a

− 1
b

,

a = m2 + p2
+⊥ , b = m2 + p2

−⊥ , (51)

with the useful relation

T2 + m2S2 =
q2

⊥
ab

. (52)

Since T ∝ q⊥ and S ∝ q⊥, we conclude that J1 ∝
q⊥. The impact factor in (48) and (50) changes its sign
under the exchange + ↔ − which is directly related to
the obvious symmetry of the diagrams of Fig. 1.3 under
lepton exchange e+ ↔ e−.

It is interesting to compare the structure of the am-
plitudes obtained for single bremsstrahlung (Fig. 1.2) and
for single pair production (Fig. 1.3). In the former case,
using (1.63), we can express the amplitude of the inelastic
process ee → eeγ via the amplitudes of one elastic pro-
cess ee → ee but with different momenta for leptons of
the upper block:

Mee→eeγ =
√

4πα

×
{

V Λ
λ1 λ(p1, k)

2kp1
[Mee→ee(p1 − k, p3)]λ λ3

(53)

− [Mee→ee(p1, p3 + k)]λ1 λ

V Λ
λ λ3

(p3 + k, k)
2kp3

}
.

This expression can be considered as a generalization of
the well-known classical current approximation,

Mee→eeγ =
√

4πα

[
p1e

∗

kp1
− p3e

∗

kp3

]
Mee→ee(p1, p3) , (54)
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which is valid for soft photon emission, ω � E1,3. On the
other hand, (53) is valid for the emission of a photon with
arbitrary energy but for small angles of the final photon
and lepton.

For single pair production an equation analogous to
(53) can be directly derived from (48):

Mγe→l+l−e =
√

4πα

×
V

Λ

λ+ λ(k, p+)
2kp+

[Ml−e→l−e(k − p+, p−)]λ λ− (55)

+
V

Λ

λ− λ(k, p−)
2kp−

[Ml+e→l+e(k − p−, p+)]λ λ+

 .

In contrast to the bremsstrahlung case, the amplitude for
pair production is expressed via amplitudes for two differ-
ent elastic processes: l+e → l+e and l−e → l−e.

Having the impact factors for single bremsstrahlung
(1.68) or (1.75) and for single pair production (50), we
are able to obtain the amplitudes for the processes of
Figs. 1.2–1.6. More details about the double bremsstrah-
lung in opposite directions of Fig. 1.4 and the double pair
production of Fig. 1.5 can be found in [3,4], respectively.
In the same manner, using the impact factor for double
bremsstrahlung along one direction from Sect. 5 of [1], we
get the impact factor for the process of Fig. 1.10; the cor-
responding calculations can be found in [5].

4 Pair production in e+e− collisions

We start with bremsstrahlung µ+µ− pair production of
Fig. 1.8. The corresponding impact factor is given by the
expression (see Sect. 2.1)

J1(e−
λ1

+ γ∗ → e−
λ3

+ µ+
λ+

+ µ−
λ−)

= −
√

4πα

k2

∑
Λ=0,±1

A(Λ)V
Λ
(k, p+) . (56)

The vertex V (k, p+) has been obtained already in (25) (the
mass has to be identified with the muon mass mµ), the
virtuality of the photon k2 = (p+ + p−)2 is given via the
energy fractions x± = E±/E1 (with x++x− = x = ω/E1)
and transverse momenta p±⊥ (with p+⊥ + p−⊥ = k⊥) of
the muons:

k2 =
1

x+x−

[
x2m2

µ + (x−p+⊥ − x+p−⊥)2
]

. (57)

Therefore, it remains to calculate the quantities A(±)

and A(0) only. Using the rules from Sect. 2.1, we obtain
the expression similar to (1.63):

A(Λ) = 4πα

[
V (p1, k)V (p1 − k)

2kp1 − k2 − V (p1)V (p3 + k, k)
2kp3 + k2

]
;

the vertices V (p) and V (p, k) are given by (15) and (16),
respectively. Since

2kp1 − k2 = xa , a = m2 +
k2

⊥
x2 +

1 − x

x2 k2 ,

2kp3 + k2 =
x

1 − x
b , (58)

b = m2 +
(
q⊥ − k⊥

x

)2

+
1 − x

x2 k2 ,

where m is the electron mass, we can repeat the derivation
of (1.75) with the result

A(Λ) = 8πα

√
1 − x

x
ei(λ3ϕ3−λ1ϕ1) (59)

×
[
(1 − xδΛ,−2λ1)

√
2Te(Λ) ∗

⊥ δλ1λ3 + m xSδλ1,−λ3δΛ,2λ1

]
for Λ = ±1 and

A(0) = 8πα

√
1 − x

x
ei(λ3ϕ3−λ1ϕ1)

√
k2

x
S δλ1λ3 (60)

for Λ = 0. Here we have used the scalar S and the trans-
verse 4-vector T :

S =
1
a

− 1
b

, T =
(k⊥/x)

a
+

q⊥ − (k⊥/x)
b

. (61)

They obey the relation

T2 +
(

m2 +
1 − x

x2 k2
)

S2 =
q2

⊥
ab

, (62)

from which it follows that J1 ∝ q⊥.
The final results (56), (59), (60) and (25) coincide

with those obtained in [6] by means of considerably more
complicated calculations. The impact factor for the cross-
channel of Fig. 1.7 can be obtained using the substitution
rules, the corresponding expression is given in [6].

5 Bremsstrahlung µ+µ− pair production
with additional photon

In this section we demonstrate how the newly defined rules
in the jet-like kinematics can be efficiently applied to the
more complicated reaction

ee → eeµ+µ−γ ,

where both the produced muon pair and the photon be-
long to the first jet. That process (which is shown schemat-
ically in Fig. 1) is described by two sets of Feynman dia-
grams. The first set is the bremsstrahlung µ+µ− pair pro-
duction of Fig. 1.8 with an additional photon line attached
to the initial electron line and to every muon and electron
line in the first jet. The second set is the two-photon µ+µ−
pair production of Fig. 1.7 adding again a photon line to
both the initial electron and all final leptons lines in the
first jet. In this section we consider the first set of dia-
grams having in mind that the amplitudes for the second
set can be obtained by a simple transition to the cross-
channel. The impact factor J1 for the set under discussion
is described by the diagrams of Figs. 10 and 11.
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Fig. 10. Diagrams (including crossed intermediate muon lines)
for the impact factor related to bremsstrahlung µ+µ− pair pro-
duction with an additional photon emitted by muons

5.1 Photon emission by muons (Fig. 10)

The contribution of Fig. 10 can be written in the form

J
(10)
1 (e−

λ1
+ γ∗ → e−

λ3
+ µ+

λ+
+ µ−

λ− + γΛ′)

= − 1
k2 AµBµ =

1
k2

∑
Λ=0,±1

A(Λ)B(Λ) , (63)

where A(Λ) is given by (59) and (60) and B(Λ) corresponds
to the process γ(k) → µ+(p+) + µ−(p−) + γ(k′):

B(Λ) = 4πα

(
N−

2p−k′ − N+

2p+k′

)
, (64)

with

N− = ū−ê(Λ′)∗(k′) (p̂− + k̂′ + mµ) ê(Λ)(k) v+ ,

N+ = ū−ê(Λ)(k) (p̂+ + k̂′ − mµ) ê(Λ′)∗(k′) v+ .

Here mµ is the muon mass and

2p±k′ =
x′

x±

(
m2

µ + r2
±
)

, r± = p±⊥ − x±
x′ k′

⊥ ,

x± =
E±
E1

, x′ =
ω′

E1
, (65)

k2 =
1

x+x−

[
(x+ + x−)2 m2

µ + (x−p+⊥ − x+p−⊥)2
]

+
x′

x+

(
m2

µ + r2
+
)

+
x′

x−

(
m2

µ + r2
−
)

. (66)

Using the vertices from Sect. 2.1, we immediately obtain

B(Λ)

4πα
=

1
2p−k′ V

Λ

λ+ λ(k, p+) V Λ′
λ λ−(k − p+, k′)

− 1
2p+k′ V

Λ

λ− λ(k, p−) V Λ′
λ λ+

(k − p−, k′)

+ V
Λ Λ′

λ+ λ−(k, p+, k′) − V
Λ Λ′

λ− λ+
(k, p−, k′) . (67)
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Fig. 11. Diagrams for the impact factor related to bremsstrah-
lung µ+µ− pair production with an additional photon emitted
by the electron

The last two items are due to diagrams of Fig. 10 with the
crossed intermediate muon line.

For a soft final photon (x′ � 1, k′
⊥ → 0 and k′

⊥/x′
remains finite) we have

B(Λ) = 4πα V
Λ

λ+ λ−(k, p+)

(
e

′∗p−
p−k′ − e

′∗p+

p+k′

)
. (68)

This expression corresponds to the approximation of clas-
sical currents. In that limit the virtuality k2 of (66) sim-
plifies to (57).

5.2 Photon emission by electrons (Fig. 11)

It is convenient to use the same notation as for the process
of double bremsstrahlung (see Fig. 1.13), but to take into
account that the photon k1 is now virtual with k2

1 > 0 and
its helicity is Λ1 = 0,±1. In particular, we introduce the
energy fractions

x1 =
ω1

E1
=

E+ + E−
E1

, x2 =
ω2

E1
, X3 =

E3

E1
,

x1 + x2 + X3 = 1 .

The denominators of the propagators in Fig. 11 are ex-
pressed via the energy fractions, transverse momenta and
virtuality of the first photon k2

1 as follows:

aj ≡ −(p1 − kj)2 + m2 , bj ≡ (p3 + kj)2 − m2 ,
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a1 = a0
1 +

1 − x1

x1
k2
1 , a2 = a0

2 ,

b1 = b0
1 +

x1 + X3

x1
k2
1 , b2 = b0

2 , (69)

a12 = a21 ≡ −(p1 − k1 − k2)2 + m2 = a0
12 +

X3

x1
k2
1 ,

b12 = b21 ≡ (p3 + k1 + k2)2 − m2 = b0
12 +

1
x1

k2
1 ,

where we denote by the upper index 0 the quantities in the
limit k2

1 = 0 [given in (1.83)]. The virtuality k2
1 depends

on the energy fractions x± with x+ + x− = x1 and the
transverse momenta of the muons [see (57)]

k2
1 =

1
x+x−

[
x2

1m
2
µ + (x−p+⊥ − x+p−⊥)2

]
. (70)

The contribution, corresponding to Fig. 11, can be
written in the form (we indicate explicitly the helicity
states Λ1 (Λ2) of the virtual (real) photon and the ini-
tial and final electrons λ1,3):

J
(11)
1 = − (4πα)2

k2
1

(71)

×
∑

Λ1=0,±1

V
Λ1

λ+λ−(k1, p+) CΛ1 Λ2
λ1 λ3

(x1, x2, k1⊥, k2⊥, p3⊥) ,

where V (k1, p+) is given by (25) identifying k = k1 and
m = mµ. To calculate C, we follow the electron line from
left to right in the diagrams of Fig. 11 and write down the
corresponding vertices:

C =
1

a1a12
V (p1, k1) V (p1 − k1, k2) V (p3 − q)

− 1
a1b2

V (p1, k1) V (p1 − k1) V (p1 − k1 + q, k2)

+
1

b12b2
V (p1) V (p1 + q, k1) V (p1 − k1 + q, k2)

− 1
a12

V (p1, k1, k2) V (p3 − q)

+
1

b12
V (p1) V (p1 + q, k1, k2)

+ (k1 ↔ k2) . (72)

The last two contributions contain the four particle ver-
tices corresponding to two last diagrams of Fig. 11 with the
crossed lines. Next we take into account the explicit ex-
pression (15) for the vertices V (p), the relations for V (p, k)
similar to (1.86), the relation

V (p1, k1, k2) = V (p1 + q, k1, k2)

and present C in the form

C =
√

2 X3 (1 + P12)

×MΛ1 Λ2
λ1 λ3

(x1, x2, k1⊥, k2⊥, p3⊥) Φ13 . (73)

Here we have introduced the permutation operator P12
and the factor

Φ13 =
1√
X3

ei(λ3ϕ3−λ1ϕ1) (74)

including the common phase. This allows us to omit below
all factors Φ from vertices V (p, k) and V (p, k1, k2). As a
result, we obtain the expression similar to (1.87), but with
Λ1 = 0,±1:

X3M
Λ1Λ2
λ1 λ3

= A2 V Λ1
λ1λ(p1, k1) V Λ2

λλ3
(p1 − k1 + q, k2)

+ q⊥B2
Λ1Λ2
λ1 λ3

+ Ã2V
Λ1Λ2
λ1λ3

(p1, k1, k2) , (75)

where the quantities A2 and Ã2 are of the same form as
in (1.88), however with denominators a1, b1, a12 and b12
of the propagators depending on the virtuality k2

1:

A2 =
X3

a1a12
− 1 − x1

a1b2
+

1
b12b2

, Ã2 = − X3

a12
+

1
b12

. (76)

The transverse 4-vector B2 is similar to that in (1.89):

B2
Λ1Λ2
λ1 λ3

=

− X3
2e

(Λ2) ∗
⊥

a1a12
V Λ1

λ1λ3
(p1, k1)

(
1 − x2

1 − x1
δΛ2,−2λ3

)
+

2e
(Λ1) ∗
⊥

b12b2
V Λ2

λ1λ3
(p1 − k1 + q, k2) (1 − x1 δΛ1,−2λ1)

× (1 − δΛ1,0) . (77)

For the case Λ1 = ±1 all independent helicity states of
amplitude MΛ1Λ2

λ1 λ3
from (75) coincide with those in (1.92)–

(1.96). For the case Λ1 = 0 we obtain

X3M
0Λ2
λ1 λ3

(78)

= 2
√

2k2
1

1 − x1

x1

[
A2 V Λ2

λ1λ3
(p1 − k1, k2)

− X3

a1a12

(
q⊥e

(Λ2) ∗
⊥

)(
1 − x2

1 − x1
δΛ2,−2λ3

)
δλ1,λ3

]
.

The amplitudes (75) and (78) are given in such a form
that all individual large (compared to q⊥) contributions
have been rearranged into finite expressions. To show that
the impact factor J

(11)
1 ∝ q⊥, it is sufficient to check that

the quantities A2 and Ã2 vanish in the limit of small q⊥:

A2 ∝ q⊥ , Ã2 ∝ q⊥ . (79)

This could be done by a direct substitution of the expres-
sions for the denominators (69) into (76).

However, it is much easier to be proved using the fol-
lowing simple consideration. Since xq = 2qP2/s ∼ m2/s
and yq = 2qP1/s ∼ m2/s, the quantity q2 = sxqyq + q2

⊥ ≈
q2
⊥ tends to zero in the limit q⊥ → 0. Therefore, in this

limit we have

a12 = 2p3q − q2 → X3syq, b12 = 2p1q + q2 → syq,

a12 → X3b12 . (80)

Taking into account

a1 = −(p3 + k2 − q)2 + m2 → −b2 + (1 − x1)syq , (81)

this leads to
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Ã2 → 0 ,

A2 → 1
a1syq

− 1 − x1

a1b2
+

1
syqb2

(82)

∝ b2 − (1 − x1)syq + a1 → 0 .

6 Summary

In the present paper we continued to develop a new ef-
fective method for calculating all helicity amplitudes of
jet-like QED processes at tree level.

Using the jet-like kinematics, the scattering amplitudes
are represented in the simple factorized form (2), where
the impact factors J1 or J2 are proportional to the scatter-
ing amplitudes of the first or second initial particle (lep-
ton, antilepton, photon) with the virtual t-channel photon
connecting the two impact factors. The final particles in
those two produced “jets” have emission and scattering
angles much less than unity, though they are allowed to
be of the order of typical emission angles mi/Ei or larger.

In calculating the impact factors in our kinematics we
have replaced the spinor structure involving leptons or
antileptons of small virtuality by transition vertices which
are matrices with respect to incoming and outgoing lepton
helicities. These vertices are finite in the limit s → ∞.

In our previous paper we have considered multiple pho-
ton bremsstrahlung. In that case the impact factors are
given as simple matrix products of vertices going along
the lepton line. One generic vertex describes the coupling
of the leptons to the t-channel virtual photon. At most
two other nonzero such vertices were needed to describe
all processes with only real bremsstrahlung photons. At
this stage the diagrams of Figs. 1.2, 1.4, 1.9 and 1.11 could
be easily calculated including all helicity states.

In the present paper we extended our method to con-
sider also processes with lepton pair production. In other
words, we now allow that more than one lepton line con-
nected by virtual photons (with finite energy fraction and
small virtuality) are present in the considered impact fac-
tor.

The idea based on gauge invariance consists in decom-
posing the impact factor with such a virtual photon k with
helicity Λ into a product of two building blocks A(Λ) and
B(Λ) (which contain their own lepton lines) and sum over
the helicities of the virtual photon:

J1 =
1
k2 AµBµ = − 1

k2

∑
Λ=0,±1

A(Λ)B(Λ). (83)

The block A(Λ) = Ae(Λ)∗ contains the “outgoing”, and
B(Λ) = Be(Λ) the “incoming” virtual photon.

For that purpose we have generalized our previous
bremsstrahlung vertices to include the case of virtual pho-
tons; the corresponding expressions are given in (16). Us-
ing simple crossing relations we found the vertices for
the γ(k) → e+(p+) + e−(p−) transition where the ini-
tial photon is either real or virtual; the results are col-

lected in (25) and (28). We have also introduced vertices
with four external lines (19), (30)–(33) (analogous to the
case of scalar QED) for the e(p) → [γ(k1)γ(k2)] + e(p′) as
well as the γ(k) → [e+(p+)γ(k′)] + e−(p−) and γ(k) →
[e−(p−)γ(k′)] + e+(p+) transitions. Using these vertices
we develop the convenient diagrammatic rules presented
in Figs. 3–7.

To discuss the impact factor for the case where initial
photons and final leptons or initial leptons and final pho-
tons are interchanged we have presented the correspond-
ing crossing rules in (43)–(45). So, e.g., the impact factor
of diagram of Fig. 1.10 is the cross-channel of the double
bremsstrahlung impact factor of Fig. 1.9.

Let us recall again that the impact factors are finite in
the high-energy limit: they depend on the energy fractions
and the transverse momenta of the jet particles, and on the
helicities of all initial and final particles. By construction
all individual large contributions (compared to q⊥) are
arranged into finite expressions. Therefore, these helicity
amplitudes are very convenient for numerical calculations
in the jet-like kinematics.

We have applied our technique to calculate the impact
factor for the single lepton pair production of Fig. 1.3; see
(50). This allows one to obtain the pair production pro-
cesses shown in Figs. 1.3 and 1.5. Taking into account also
the impact factors for single bremsstrahlung, the diagram
of Fig. 1.6 is captured too.

The impact factor for the pair production of Fig. 1.8
has been studied in Sect. 4; see (56), (59) and (60). Us-
ing the crossing relations, also the reaction of Fig. 1.7 is
described.

Finally we demonstrated in Sect. 5 how our new meth-
od can be used to calculate the leading contribution to
higher order impact factors taking as an example a jet
from an electron containing in addition a muon pair and
a photon. This impact factor can be used to describe the
process of Fig. 1.
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